Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Inland waters play a major role in global greenhouse gas (GHG) budgets. The smallest of these systems (i.e., ponds) have a particularly large—but poorly constrained—emissions footprint at the global scale. Much of this uncertainty is due to a poor understanding of temporal variability in emissions. Here, we conducted high‐resolution temporal sampling to quantify GHG exchange between four temperate constructed ponds and the atmosphere on an annual basis. We show these ponds are a net source of GHGs to the atmosphere (564.4 g CO2‐eq m−2 yr−1), driven by highly temporally variable diffusive methane (CH4) emissions. Diffusive CH4release to the atmosphere was twice as high during periods when the ponds had a stratified water column than when it was mixed. Ebullitive CH4release was also higher during stratification. Building ponds to favor mixed conditions thus presents an opportunity to minimize the global GHG footprint of future pond construction.more » « less
-
Abstract. Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Emissions and atmospheric concentrations of CH4 continue to increase, maintaining CH4 as the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 for temperature change is related to its shorter atmospheric lifetime, stronger radiative effect, and acceleration in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the factors explaining the well-observed atmospheric growth rate arise from diverse, geographically overlapping CH4 sources and from the uncertain magnitude and temporal change in the destruction of CH4 by short-lived and highly variable hydroxyl radicals (OH). To address these challenges, we have established a consortium of multi-disciplinary scientists under the umbrella of the Global Carbon Project to improve, synthesise and update the global CH4 budget regularly and to stimulate new research on the methane cycle. Following Saunois et al. (2016, 2020), we present here the third version of the living review paper dedicated to the decadal CH4 budget, integrating results of top-down CH4 emission estimates (based on in-situ and greenhouse gas observing satellite (GOSAT) atmospheric observations and an ensemble of atmospheric inverse-model results) and bottom-up estimates (based on process-based models for estimating land-surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations). We present a budget for the most recent 2010–2019 calendar decade (the latest period for which full datasets are available), for the previous decade of 2000–2009 and for the year 2020. The revision of the bottom-up budget in this edition benefits from important progress in estimating inland freshwater emissions, with better accounting of emissions from lakes and ponds, reservoirs, and streams and rivers. This budget also reduces double accounting across freshwater and wetland emissions and, for the first time, includes an estimate of the potential double accounting that still exists (average of 23 Tg CH4 yr-1). Bottom-up approaches show that the combined wetland and inland freshwater emissions average 248 [159–369] Tg CH4 yr-1 for the 2010–2019 decade. Natural fluxes are perturbed by human activities through climate, eutrophication, and land use. In this budget, we also estimate, for the first time, this anthropogenic component contributing to wetland and inland freshwater emissions. Newly available gridded products also allowed us to derive an almost complete latitudinal and regional budget based on bottom-up approaches. For the 2010–2019 decade, global CH4 emissions are estimated by atmospheric inversions (top-down) to be 575 Tg CH4 yr-1 (range 553–586, corresponding to the minimum and maximum estimates of the model ensemble). Of this amount, 369 Tg CH4 yr-1 or ~65 % are attributed to direct anthropogenic sources in the fossil, agriculture and waste and anthropogenic biomass burning (range 350–391 Tg CH4 yr-1 or 63–68 %). For the 2000–2009 period, the atmospheric inversions give a slightly lower total emission than for 2010–2019, by 32 Tg CH4 yr-1 (range 9–40). Since 2012, global direct anthropogenic CH4 emission trends have been tracking scenarios that assume no or minimal climate mitigation policies proposed by the Intergovernmental Panel on Climate Change (shared socio-economic pathways SSP5 and SSP3). Bottom-up methods suggest 16 % (94 Tg CH4 yr-1) larger global emissions (669 Tg CH4 yr-1, range 512–849) than top-down inversion methods for the 2010–2019 period. The discrepancy between the bottom-up and the top-down budgets has been greatly reduced compared to the previous differences (167 and 156 Tg CH4 yr-1 in Saunois et al. (2016, 2020), respectively), and for the first time uncertainty in bottom-up and top-down budgets overlap. The latitudinal distribution from atmospheric inversion-based emissions indicates a predominance of tropical and southern hemisphere emissions (~65 % of the global budget, <30° N) compared to mid (30° N–60° N, ~30 % of emissions) and high-northern latitudes (60° N–90° N, ~4 % of global emissions). This latitudinal distribution is similar in the bottom-up budget though the bottom-up budget estimates slightly larger contributions for the mid and high-northern latitudes, and slightly smaller contributions from the tropics and southern hemisphere than the inversions. Although differences have been reduced between inversions and bottom-up, the most important source of uncertainty in the global CH4 budget is still attributable to natural emissions, especially those from wetlands and inland freshwaters. We identify five major priorities for improving the CH4 budget: i) producing a global, high-resolution map of water-saturated soils and inundated areas emitting CH4 based on a robust classification of different types of emitting ecosystems; ii) further development of process-based models for inland-water emissions; iii) intensification of CH4 observations at local (e.g., FLUXNET-CH4 measurements, urban-scale monitoring, satellite imagery with pointing capabilities) to regional scales (surface networks and global remote sensing measurements from satellites) to constrain both bottom-up models and atmospheric inversions; iv) improvements of transport models and the representation of photochemical sinks in top-down inversions, and v) integration of 3D variational inversion systems using isotopic and/or co-emitted species such as ethane as well as information in the bottom-up inventories on anthropogenic super-emitters detected by remote sensing (mainly oil and gas sector but also coal, agriculture and landfills) to improve source partitioning. The data presented here can be downloaded from https://doi.org/10.18160/GKQ9-2RHT (Martinez et al., 2024).more » « less
-
Abstract Ponds are often identified by their small size and shallow depths, but the lack of a universal evidence-based definition hampers science and weakens legal protection. Here, we compile existing pond definitions, compare ecosystem metrics (e.g., metabolism, nutrient concentrations, and gas fluxes) among ponds, wetlands, and lakes, and propose an evidence-based pond definition. Compiled definitions often mentioned surface area and depth, but were largely qualitative and variable. Government legislation rarely defined ponds, despite commonly using the term. Ponds, as defined in published studies, varied in origin and hydroperiod and were often distinct from lakes and wetlands in water chemistry. We also compared how ecosystem metrics related to three variables often seen in waterbody definitions: waterbody size, maximum depth, and emergent vegetation cover. Most ecosystem metrics (e.g., water chemistry, gas fluxes, and metabolism) exhibited nonlinear relationships with these variables, with average threshold changes at 3.7 ± 1.8 ha (median: 1.5 ha) in surface area, 5.8 ± 2.5 m (median: 5.2 m) in depth, and 13.4 ± 6.3% (median: 8.2%) emergent vegetation cover. We use this evidence and prior definitions to define ponds as waterbodies that are small (< 5 ha), shallow (< 5 m), with < 30% emergent vegetation and we highlight areas for further study near these boundaries. This definition will inform the science, policy, and management of globally abundant and ecologically significant pond ecosystems.more » « less
-
Abstract Small waterbodies have potentially high greenhouse gas emissions relative to their small footprint on the landscape, although there is high uncertainty in model estimates. Scaling their carbon dioxide (CO2) and methane (CH4) exchange with the atmosphere remains challenging due to an incomplete understanding and characterization of spatial and temporal variability in CO2and CH4. Here, we measured partial pressures of CO2(pCO2) and CH4(pCH4) across 30 ponds and shallow lakes during summer in temperate regions of Europe and North America. We sampled each waterbody in three locations at three times during the growing season, and tested which physical, chemical, and biological characteristics related to the means and variability ofpCO2andpCH4in space and time. Summer means ofpCO2andpCH4were inversely related to waterbody size and positively related to floating vegetative cover;pCO2was also positively related to dissolved phosphorus. Temporal variability in partial pressure in both gases weas greater than spatial variability. Although sampling on a single date was likely to misestimate mean seasonalpCO2by up to 26%, mean seasonalpCH4could be misestimated by up to 64.5%. Shallower systems displayed the most temporal variability inpCH4and waterbodies with more vegetation cover had lower temporal variability. Inland waters remain one of the most uncertain components of the global carbon budget; understanding spatial and temporal variability will ultimately help us to constrain our estimates and inform research priorities.more » « less
-
Abstract Inland waters are important sources of the greenhouse gasses (GHGs) carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) to the atmosphere. In the framework of the second phase of the REgional Carbon Cycle Assessment and Processes (RECCAP‐2) initiative, we synthesize existing estimates of GHG emissions from streams, rivers, lakes and reservoirs, and homogenize them with regard to underlying global maps of water surface area distribution and the effects of seasonal ice cover. We then produce regionalized estimates of GHG emissions over 10 extensive land regions. According to our synthesis, inland water GHG emissions have a global warming potential of an equivalent emission of 13.5 (9.9–20.1) and 8.3 (5.7–12.7) Pg CO2‐eq. yr−1at a 20 and 100 years horizon (GWP20and GWP100), respectively. Contributions of CO2dominate GWP100, with rivers being the largest emitter. For GWP20, lakes and rivers are equally important emitters, and the warming potential of CH4is more important than that of CO2. Contributions from N2O are about two orders of magnitude lower. Normalized to the area of RECCAP‐2 regions, S‐America and SE‐Asia show the highest emission rates, dominated by riverine CO2emissions.more » « less
An official website of the United States government
